Beneficial effects of paricalcitol on cardiac dysfunction and remodelling in a model of established heart failure

AUTHORS
Maria Tamayo
Laura Martin-Nunes
Almudena Val-Blasco
Maria Jose G.M-Piedras
Jose Alberto Navarro-Garcia
Eduardo Lage
Patricia Prieto
Gema Ruiz-Hurtado
Maria Fernandez-Velasco
Carmen Delgado
JOURNAL British Journal of Pharmacology Vol 177(14), 3273-3290
ABSTRACT
Background and Purpose

The synthetic vitamin D3 analogue paricalcitol acts as a selective activator of the vitamin D receptor (VDR). While there is evidence for cardioprotective effects of paricalcitol associated with the VDR pathway, less information is available about the structural and functional cardiac effects of paricalcitol on established heart failure (HF) and particularly its effects on associated electrophysiological or Ca2+ handling remodelling.

Experimental Approach

We used a murine model of transverse aortic constriction (TAC) to study the effect of paricalcitol on established HF. Treatment was initiated 4 weeks after surgery over five consecutive weeks, and mice were sacrificed 9 weeks after surgery. Cardiac MRI (CMRI) was performed 4 and 9 weeks after surgery. Hearts were used for biochemical and histological studies and to isolate ventricular myocytes for electrophysiological and calcium imaging studies.

Key Results

CMRI analysis revealed that, compared with vehicle, paricalcitol treatment prevented the progression of ventricular dilation and hypertrophy after TAC and halted the corresponding decline in ejection fraction. These beneficial effects were related to the attenuation of intracellular Ca2+ mishandling remodelling, antifibrotic and antihypertrophic effects and potentially antiarrhythmic effects by preventing the reduction of K+ current density and the long QT, JT and TpTe intervals observed in HF animals.

Conclusion and Implications

The results suggest that paricalcitol treatment in established HF hampers disease progression and improves adverse electrophysiological and Ca2+ handling remodelling, attenuating the vulnerability to HF‐associated ventricular arrhythmias. Paricalcitol may emerge as a potential therapeutic option in the treatment of HF.

LINK here

Contact Us

eduardo.lage@uam.es
+34 91 497-5787

error: Content is protected !!